Self-reported symptom study of COVID-19 chemosensory dysfunction in Malaysia | Scientific Reports – Nature.com

[ad_1]

  • 1.

    Guan, W. et al. Clinical characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 382, 1708–1720 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Goyal, P. et al. Clinical characteristics of Covid-19 in New York City. N. Engl. J. Med. 382, 2372–2374 (2020).

    Article 

    Google Scholar
     

  • 3.

    Giacomelli, A. et al. Self-reported olfactory and taste disorders in patients with Severe Acute Respiratory Coronavirus 2 Infection: A cross-sectional study. Clin. Infect. Dis. 71, 889–890 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Spinato, G. et al. Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. JAMA 323, 2089–2090 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Lechien, J. R. et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur. Arch. Otorhinolaryngol. 277, 2251–2261 (2020).

    Article 

    Google Scholar
     

  • 6.

    Menni, C. et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 26, 1037–1040 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Kaye, R., Chang, C. W. D., Kazahaya, K., Brereton, J. & Denneny, J. C. COVID-19 anosmia reporting tool: Initial findings. Otolaryngol. Neck Surg. 163, 132–134 (2020).

    Article 

    Google Scholar
     

  • 8.

    Parma, V. et al. More than smell—COVID-19 is associated with severe impairment of smell, taste, and chemesthesis. Chem. Senses 45, 609–622 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Mao, L. et al. Neurologic manifestations of hospitalized patients with Coronavirus Disease 2019 in Wuhan China. JAMA Neurol. 77, 683–690 (2020).

    Article 

    Google Scholar
     

  • 10.

    Lee, Y., Min, P., Lee, S. & Kim, S. W. Prevalence and duration of acute loss of smell or taste in COVID-19 patients. J. Korean Med. Sci. 35, e174 (2020).

  • 11.

    Tham, A. C. et al. Olfactory taste disorder as a presenting symptom of COVID-19: A large single-center Singapore study. Eur. Arch. Otorhinolaryngol. 278, 1853–1862 (2021).

    Article 

    Google Scholar
     

  • 12.

    Butowt, R., Bilinska, K. & Von Bartheld, C. S. Chemosensory dysfunction in COVID-19: Integration of genetic and epidemiological data points to D614G spike protein variant as a contributing factor. ACS Chem. Neurosci. 11, 3180–3184 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Von Bartheld, C. S., Butowt, R. & Hagen, M. M. Prevalence of chemosensory dysfunction in COVID-19 patients: A systematic review and meta-analysis reveals significant ethnic differences. ACS Chem. Neurosci. 11, 2944–2961 (2020).

    Article 

    Google Scholar
     

  • 14.

    Lemeshow, S., Hosmer, D. W., Klar, J. & Lwanga, S. K. Adequacy of sample size in health studies. (John Wiley & Sons, Inc., 1990).

  • 15.

    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article 

    Google Scholar
     

  • 16.

    Sim, B. L. H. et al. Clinical characteristics and risk factors for severe COVID-19 infections in Malaysia: A nationwide observational study. Lancet Reg. Heal. West. Pacific 4, 100055 (2020).

  • 17.

    Ng, B. H. et al. COVID-19 detected from targeted contact tracing, attempting to see the pattern in random happenings: Early lessons in Malaysia. Med. J. Malaysia 75, 582–584 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Ramasamy, K., Saniasiaya, J. & Abdul Gani, N. Olfactory and gustatory dysfunctions as a clinical manifestation of Coronavirus Disease 2019 in a Malaysian tertiary center. Ann. Otol. Rhinol. Laryngol. 130, 513–519 (2021).

  • 19.

    Violán, C. et al. Comparison of the information provided by electronic health records data and a population health survey to estimate prevalence of selected health conditions and multimorbidity. BMC Public Health 13, 251 (2013).

    Article 

    Google Scholar
     

  • 20.

    Basch, E. et al. Patient versus clinician symptom reporting using the National Cancer Institute Common Terminology Criteria for Adverse Events: Results of a questionnaire-based study. Lancet Oncol. 7, 903–909 (2006).

    Article 

    Google Scholar
     

  • 21.

    Fromme, E. K., Eilers, K. M., Mori, M., Hsieh, Y. C. & Beer, T. M. How accurate is clinician reporting of chemotherapy adverse effects? A comparison with patient-reported symptoms from the Quality-of-Life Questionnaire C30. J. Clin. Oncol. 22, 3485–3490 (2004).

    Article 

    Google Scholar
     

  • 22.

    Hopkins, C. et al. Six month follow-up of self-reported loss of smell during the COVID-19 pandemic. Rhinology 59, 26–31 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Majid, A., Burenhult, N., Stensmyr, M., De Valk, J. & Hansson, B. S. Olfactory language and abstraction across cultures. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170139 (2018).

  • 24.

    Majid, A. Human olfaction at the intersection of language, culture, and biology. Trends Cogn. Sci. 25, 111–123 (2021).

    Article 

    Google Scholar
     

  • 25.

    Baharuddin, A. R. & Sharifudin. The impact of geographical location on taste sensitivity and preference. Int. Food Res. J. 22, 731–738 (2015).

  • 26.

    Von Bartheld, C. S., Hagen, M. M. & Butowt, R. The D614G virus mutation enhances anosmia in COVID-19 patients: Evidence from a systematic review and meta-analysis of studies from South Asia. ACS Chem. Neurosci. 12, 3535–3549 (2021).

    Article 

    Google Scholar
     

  • 27.

    Soh, S. H. L. et al. Prevalence of olfactory and taste dysfunction in COVID-19 patients: A community care facility study. Eur. Arch. Otorhinolaryngol. 278, 3375–3380 (2021).

    Article 

    Google Scholar
     

  • 28.

    See, A., Ko, K. K. K. & Toh, S. T. Epidemiological analysis in support of hypothesis that D614G virus mutation is a major contributing factor to chemosensory dysfunction in COVID-19 patients. Eur. Arch. Otorhinolaryngol. 278, 3595–3596 (2021).

    Article 

    Google Scholar
     

  • 29.

    Chong, Y. M. et al. SARS-CoV-2 lineage B.6 was the major contributor to early pandemic transmission in Malaysia. PLoS Negl. Trop. Dis. 14, 1–12 (2020).

  • 30.

    Mat Yassim, A. S. et al. COVID-19 outbreak in Malaysia: Decoding D614G mutation of SARS-CoV-2 virus isolated from an asymptomatic case in Pahang. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2021.02.387 (2021).

  • 31.

    Sudre, C. et al. Symptom clusters in COVID-19: a potential clinical prediction tool from the COVID Symptom study app. Preprint at medRxiv https://doi.org/10.1101/2020.06.12.20129056 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Elliott, J. et al. Symptom reporting in over 1 million people: community detection of COVID-19. Preprint at medRxiv https://doi.org/10.1101/2021.02.10.21251480 (2021).

    Article 

    Google Scholar
     

  • 33.

    Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Xiao, F. et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 158, 1831-1833.e3 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Eliezer, M. et al. Sudden and complete olfactory loss of function as a possible symptom of COVID-19. JAMA Otolaryngol. Neck Surg. 146, 674–675 (2020).

    Article 

    Google Scholar
     

  • 36.

    Bilinska, K., Jakubowska, P., Von Bartheld, C. S. & Butowt, R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age. ACS Chem. Neurosci. 11, 1555–1562 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Brann, D. H. et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 6, 5801–5832 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Zheng, J. et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature 589, 603–607 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 39.

    Cazzolla, A. P. et al. Taste and smell disorders in COVID-19 patients: Role of interleukin-6. ACS Chem. Neurosci. 11, 2774–2781 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Rodriguez, S. et al. Innate immune signaling in the olfactory epithelium reduces odorant receptor levels: Modeling transient smell loss in COVID-19 patients. Preprint at medRxiv https://doi.org/10.1101/2020.06.14.20131128 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Butowt, R., Meunier, N., Bryche, B. & von Bartheld, C. S. The olfactory nerve is not a likely route to brain infection in COVID-19: A critical review of data from humans and animal models. Acta Neuropathol. 141, 809–822 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Sato, T. et al. Expression of ACE2 and TMPRSS2 proteins in the upper and lower aerodigestive tracts of rats: Implications on COVID 19 Infections. Laryngoscope 131, E932–E939 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Xu, H. et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 12, 8 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Lechien, J. R. et al. Loss of smell and taste in 2013 european patients with mild to moderate covid-19. Ann. Intern. Med. 173, 672–675 (2020).

    Article 

    Google Scholar
     

  • 45.

    Vaira, L. A. et al. Olfactory and gustatory function impairment in COVID-19 patients: Italian objective multicenter-study. Head Neck 42, 1560–1569 (2020).

    Article 

    Google Scholar
     

  • 46.

    Moein, S. T. et al. Smell dysfunction: A biomarker for COVID-19. Int. Forum Allergy Rhinol. 10, 944–950 (2020).

    Article 

    Google Scholar
     

  • 47.

    Hintschich, C. A. et al. Psychophysical tests reveal impaired olfaction but preserved gustation in COVID-19 patients. Int. Forum Allergy Rhinol. 10, 1105–1107 (2020).

    Article 

    Google Scholar
     

  • 48.

    Lötsch, J. & Hummel, T. Clinical usefulness of self-rated olfactory performance—a data science-based assessment of 6000 patients. Chem. Senses 44, 357–364 (2019).

    Article 

    Google Scholar
     

  • 49.

    Hoffman, H. J., Rawal, S., Li, C. M. & Duffy, V. B. New chemosensory component in the US National Health and Nutrition Examination Survey (NHANES): first-year results for measured olfactory dysfunction. Rev. Endocr. Metab. Disord. 17, 221–240 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 50.

    Boscutti, A. et al. Olfactory and gustatory dysfunctions in SARS-CoV-2 infection: a systematic review. Brain, Behav. Immun. – Heal. 15, 100268 (2021).

  • 51.

    Gerkin, R. C. et al. Recent smell loss is the best predictor of COVID-19 among individuals with recent respiratory symptoms. Chem. Senses 46, bjaa081 (2021).

  • 52.

    Cecchetto, C. et al. Assessing the extent and timing of chemosensory impairments during COVID-19 pandemic. Sci. Rep. 11, 17504 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 53.

    Sai-Guan, L., Husain, S., Zahedi, F. D., Ahmad, N. & Gendeh, B. S. Cultural adaptation of Sniffin’ Sticks smell identification test: the Malaysian version. Iran. J. Otorhinolaryngol. 32, 213–222 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]
    阅读更多

    发表回复

    您的电子邮箱地址不会被公开。 必填项已用 * 标注